Balancing large or awkward loads can be a challenge for many industrial applications. Movements that are imbalanced can impact performance, cause unnecessary wear and tear, and jeopardize worker safety. Synchronizing actuators has traditionally required complex integration of external devices and extensive configuration or programming, but the latest generation of smart linear actuators is easy to install and capable of synchronizing automatically.
A load that is heavier on one end could lead to potential damage to equipment or its components if not handled properly. While some imbalance is predictable, others are the result of unanticipated events such as sudden load shifts. Equipment designers account for imbalance by using multiple actuators, but unless all are synchronized closely, problems can emerge. Using a pair of actuators to assist in raising and lowering the hood of a large construction vehicle, for example, can result in bouncing, slow operation, or unnecessary wear and tear if the actuators are not operating in tandem.
The larger and more uneven the load, the greater the need to synchronize the actuators that move it. Stabilizing up-and-down and side-to-side motion of a 20-meter platform supporting workers as they build a jumbo jet, for example, could require synchronizing more than 10 actuators. Complicating the challenge is the potential for the load to vary considerably during operation as workers move around the platform, and the fact that the platform itself may not be uniform due to weld tolerances in joined segments.
When properly synchronized, multiple actuators can also work together to handle loads larger than any of them could handle individually. The likely effectiveness in synchronizing large or awkward loads varies considerably depending on whether they are using hydraulic, electromechanical or smart electromechanical actuators with intrinsic synchronization.